30 Speakers Highlight AI, Memory, Sustainability, and More at the May 21-22 Summit!

SNIA Compute, Memory, and Storage Summit is where solutions, architectures, and community come together. Our 2024 Summit – taking place virtually on May 21-22, 2024 – is the best example to date, featuring a stellar lineup of 30 speakers in sessions on artificial intelligence, the future of memory, sustainability, critical storage security issues, the latest on CXL®, UCIe™, and Ultra Ethernet, and more.

“We’re excited to welcome executives, architects, developers, implementers, and users to our 12th annual Summit,” said David McIntyre, Compute, Memory, and Storage Summit Chair and member of the SNIA Board of Directors. “Our event features technology leaders from companies like Dell, IBM, Intel, Meta, Samsung – and many more – to bring us the latest developments in AI, compute, memory, storage, and security in our free online event.  We hope you will attend live to ask questions of our experts as they present and watch those you miss on-demand.“

Artificial intelligence sessions sponsored by the SNIA Data, Networking & Storage Forum feature J Michel Metz of the Ultra Ethernet Consortium (UEC) on powering AI’s future with the UEC,  John Cardente of Dell on storage requirements for AI, Jeff White of Dell on edgenuity, and Garima Desai of Samsung on creating a sustainable semiconductor industry for the AI era. Other AI sessions include Manoj Wadekar of Meta on the evolution of hyperscale data centers from CPU centric to GPU accelerated AI, Paul McLeod of Supermicro on storage architecture optimized for AI, and Prasad Venkatachar of Pliops on generative AI data architecture.

Memory sessions begin with Jim Handy and Tom Coughlin on how memories are driving big architectural changes. Ahmed Medhioub of Astera Labs will discuss breaking through the memory wall with CXL, and Sudhir Balasubramanian and Arvind Jagannath of VMware will share their memory vision for real world applications.

Compute sessions include Andy Walls of IBM on computational storage and real time ransomware detection, JB Baker of ScaleFlux on computational storage real world deployments, Dominic Manno of Los Alamos National Labs on streamlining scientific workflows in computational storage, and Bill Martin and Jason Molgaard of the SNIA Computational Storage Technical Work Group on computational storage standards.

CXL will be featured with a CXL Consortium panel on increasing AI and HPC application performance with CXL fabrics, a presentation from Larrie Carr of Rambus on  proprietary internconnects and CXL, and a session from Samsung and Broadcom on bringing unique customer value with CXL accelerator-based memory solutions.

Richelle Ahlvers and Brian Rea of the UCI Express will discuss enabling an open chipset system with UCIe.

The Summit will also dive into security with a number of presentations on this important topic.

And there is much more, including a memory Birds-of-a-Feather session, a live Memory Workshop and Hackathon featuring CXL exercises, and opportunities to chat with our experts! Check out the agenda and register for free!

Power Efficiency Measurement – Our Experts Make It Clear – Part 4

Measuring power efficiency in datacenter storage is a complex endeavor. A number of factors play a role in assessing individual storage devices or system-level logical storage for power efficiency. Luckily, our SNIA experts make the measuring easier!

In this SNIA Experts on Data blog series, our experts in the SNIA Solid State Storage Technical Work Group and the SNIA Green Storage Initiative explore factors to consider in power efficiency measurement, including the nature of application workloads, IO streams, and access patterns; the choice of storage products (SSDs, HDDs, cloud storage, and more); the impact of hardware and software components (host bus adapters, drivers, OS layers); and access to read and write caches, CPU and GPU usage, and DRAM utilization.

Join us on our final installment on the  journey to better power efficiency – Part 4: Impact of Storage Architectures on Power Efficiency Measurement.

And if you missed our earlier segments, click on the titles to read them:  Part 1: Key Issues in Power Efficiency Measurement,  Part 2: Impact of Workloads on Power Efficiency Measurement, and Part 3: Traditional Differences in Power Consumption: Hard Disk Drives vs Solid State Drives.  Bookmark this blog series and explore the topic further in the SNIA Green Storage Knowledge Center.

Impact of Storage Architectures on Power Efficiency Measurement

Ultimately, the interplay between hardware and software storage architectures can have a substantial impact on power consumption. Optimizing these architectures based on workload characteristics and performance requirements can lead to better power efficiency and overall system performance.

Different hardware and software storage architectures can lead to varying levels of power efficiency. Here’s how they impact power consumption.

Hardware Storage Architectures

  1. HDDs v SSDs:
    Solid State Drives (SSDs) are generally more power-efficient than Hard Disk Drives (HDDs) due to their lack of moving parts and faster access times. SSDs consume less power during both idle and active states.
  2. NVMe® v SATA SSDs:
    NVMe (Non-Volatile Memory Express) SSDs often have better power efficiency compared to SATA SSDs. NVMe’s direct connection to the PCIe bus allows for faster data transfers, reducing the time components need to be active and consuming power. NVMe SSDs are also performance optimized for different power states.
  3. Tiered Storage:
    Systems that incorporate tiered storage with a combination of SSDs and HDDs optimize power consumption by placing frequently accessed data on SSDs for quicker retrieval and minimizing the power-hungry spinning of HDDs.
  4. RAID Configurations:
    Redundant Array of Independent Disks (RAID) setups can affect power efficiency. RAID levels like 0 (striping) and 1 (mirroring) may have different power profiles due to how data is distributed and mirrored across drives.

Software Storage Architectures

  1. Compression and Deduplication:
    Storage systems using compression and deduplication techniques can affect power consumption. Compressing data before storage can reduce the amount of data that needs to be read and written, potentially saving power.
  2. Caching:
    Caching mechanisms store frequently accessed data in faster storage layers, such as SSDs. This reduces the need to access power-hungry HDDs or higher-latency storage devices, contributing to better power efficiency.
  3. Data Tiering:
    Similar to caching, data tiering involves moving data between different storage tiers based on access patterns. Hot data (frequently accessed) is placed on more power-efficient storage layers.
  4. Virtualization
    Virtualized environments can lead to resource contention and inefficiencies that impact power consumption. Proper resource allocation and management are crucial to optimizing power efficiency.
  5. Load Balancing:
    In storage clusters, load balancing ensures even distribution of data and workloads. Efficient load balancing prevents overutilization of certain components, helping to distribute power consumption evenly
  6. Thin Provisioning:
    Allocating storage on-demand rather than pre-allocating can lead to more efficient use of storage resources, which indirectly affects power efficiency

Just What is an IOTTA?  Inquiring Minds Learn Now!

SNIA’s twelve Technical Work Groups collaborate to develop and promote vendor-neutral architectures, standards, and education for management, movement, and security for technologies related to handling and optimizing data. One of the more unique work groups is the  SNIA Input/Output Traces, Tools, and Analysis Technical Work Group (IOTTA TWG).

SNIA Compute, Memory, and Storage Initiative recently sat down with IOTTA TWG Chairs Geoff Kuenning of Harvey Mudd College and Tom West of hyperI/O LLC to learn about some exciting new developments in their work activities and how SNIA members and colleagues can get involved.

Q: What does the IOTTA TWG do?

A: The IOTTA TWG is for those interested in the use of empirical data/metrics to better understand the actual operation and performance characteristics of storage I/O, especially as they pertain to application workloads. We summarize our work in this SNIA video https://www.youtube.com/watch?v=4EVW5IHHhEk

One of our most important activities is to sponsor a collaborative worldwide repository for storage-related I/O trace collection and analysis tools, application workloads, I/O traces, and best practices around such topics.

Q: What are the goals of the IOTTA Repository collaboration?

A: The primary goal of the IOTTA Repository collaboration is to create a worldwide repository for storage related I/O trace files, associated tools, and other related information, all of which are made available free of charge to the storage research and development communities in both academia and industry.

Repository data is often cited in research publications, with 627 citations to date listed on the IOTTA Repository website.

Q: Why is keeping and sharing information by way of a Repository important?

A: The IOTTA Repository provides a common facility through which a broad community (including storage vendors, storage users, and the academic community) can avail themselves of a variety of storage related I/O traces (especially contemporary I/O traces). We like to think of it as a “One-Stop-Shop”.

Q: What kind of information are you gathering for the Repository?  Is some information more important than other(s)?

A: The Repository contains a wide variety of storage related I/O trace types, including Block I/O, HPC Summaries, Key-Value Traces, NFS Traces, Parallel Traces, Static Snapshots, System Call Traces, and Workload Summaries.

Reliability Traces are the latest category of traces added to the IOTTA Repository. Generally, the Reliability Traces category includes records of storage system reliability, for example, long-term records of hard-drive failures.

The IOTTA Repository additionally provides an off-site link to traces that cannot be included directly within the repository (e.g., unable to obtain permission to host a particular trace within the repository).

Q: Who downloads this information? What groups can make use of this information?

A: Academic institutions are among the most frequent downloaders of Repository information, along with storage companies.

Practitioners can make use of various IOTTA Repository traces to gain a better understanding of actual I/O storage operation activity within various environments and scenarios.  Traces can also be used as a basis for benchmarking and testing proposed solutions.

SNIA IOTTA TWG members receive a monthly report that shows the number and types (i.e., trace names) of the traces downloaded during the month, including the downloader region (e.g., Asia, Europe, North America). The report also includes company/institution names associated with the downloaders. More information on joining the IOTTA TWG is at http://iotta.snia.org/faqs/joinIOTTA.

Q: What is some of the latest information in the Repository?

A: In February 2024, we posted NVMe drive reliability traces collected by Alibaba. The collection includes both fail-stop and fail-slow data for a large drive population in Alibaba’s servers.

Q: What is the importance of these traces?

A: The authors of the associated USENIX ATC 2022 paper indicate that the Alibaba Fail-Stop dataset is the first large-scale public dataset on real-world operational data of NVMe SSD.  From their analysis of the dataset, they identified a series of major reliability changes in NVMe SSD.

In addition, the authors of the associated USENIX FAST 2023 paper indicate that the Alibaba Fail-Slow dataset is the first large-scale, clear-labeled public dataset on real-world operational traces aiming at fail-slow detection (i.e., where the drive continues to run but with poor performance). Based upon the dataset, the authors have provided a root cause analysis on fail-slow drives.

With the growing importance of NVMe SSDs in the data center, it is critical to understand the reliability of hardware in the cloud.  The Repository provides the traces download and also links to the papers and presentation videos that discuss these large-scale SSD reliability studies.

Q: What new activity would you like to see in the Repository?

A: We’d like to see more trace downloads for analysis.  Most downloads today are related to benchmarking and replay.  Trace activity could feed into a simulated computer system to test activities like failures.

We would also like to see more input of data related to tape storage. The Repository does not have much information on cold storage and multilevel storage between hot and cold storage.

Finally, we would like feedback on how people are using what they download – for analysis, reliability, benchmarks and other areas they have found the downloads useful. We also want to know what else you would like to be able to download.  You can contact us directly at iottachairs@snia.org.

Thanks for your time and the great information about the IOTTA Repository.  Learn more about the IOTTA Repository on their FAQ page.

2024 Year of the Summit Kicks Off – Meet us at MemCon

2023 was a great year for SNIA CMSI to meet with IT professionals and end users in “Summits” to discuss technologies, innovations, challenges, and solutions.  Our outreach at six industry events reached over 16,000 and we thank all who engaged with our CMSI members.

We are excited to continue a second “Year of the Summit” with a variety of opportunities to network and converse with you.  Our first networking event will take place March 26-27, 2024 at MemCon in Mountain View, CA.

MemCon 2024 focuses on systems design for the data centric era, working with data-intensive workloads, integrating emerging technologies, and overcoming data movement and management challenges. The agenda includes presentations and panels, featuring speakers from Meta, Microsoft, Netflix, Samsung, and Warner Brothers.   It’s the perfect event to discuss the integration of SNIA’s focus on developing global standards and delivering education on all technologies related to data.  SNIA and MemCon have prepared a video highlighting several of the key topics to be discussed.

MemCon 2024 Video Preview

At MemCon, SNIA CMSI member and SDXI Technical Work Group Chair Shyam Iyer of Dell will moderate a panel discussion on How are Memory Innovations Impacting the Total Cost of Ownership in Scaling-Up and Power Consumption , discussing impacts on hyperscalers, AI/ML compute, and cost/power.

SNIA Board member David McIntyre will participate in a panel on How are Increased Adoption of CXL, HBM, and Memory Protocol Expected to Change the Way Memory and Storage is Used and Assembled? , with insights on the markets and emerging memory innovations. The full MemCon agenda is here.

In the exhibit area, SNIA leaders will be on hand to demonstrate updates to the SNIA Persistent Memory Programming Workshop featuring new CXL® memory modules (get an early look at our Programming exercises here) and to provide a first look at a Smart Data Accelerator Interface (SDXI) specification implementation.  We’ll also provide updates on SNIA technical work on form factors like those used for CXL. We will feature a drawing for gift cards at the SNIA hosted coffee receptions and at the Tuesday evening networking reception.

SNIA colleagues and friends can register for MemCon with a 15% discount using code SNIA15.

And stay tuned for engaging with SNIA at upcoming events in 2024, including a return of the SNIA Compute, Memory, and Storage Summit in May 2024, August 2024 FMS-the Future of Memory and Storage; SNIA SDC in September, and SC24 in Atlanta in November 2024. We’ll discuss each of these in depth in our Year of the Summit blog series.

Power Efficiency Measurement – Our Experts Make It Clear – Part 3

Measuring power efficiency in datacenter storage is a complex endeavor. A number of factors play a role in assessing individual storage devices or system-level logical storage for power efficiency. Luckily, our SNIA experts make the measuring easier!

In this SNIA Experts on Data blog series, our experts in the SNIA Solid State Storage Technical Work Group and the SNIA Green Storage Initiative explore factors to consider in power efficiency measurement, including the nature of application workloads, IO streams, and access patterns; the choice of storage products (SSDs, HDDs, cloud storage, and more); the impact of hardware and software components (host bus adapters, drivers, OS layers); and access to read and write caches, CPU and GPU usage, and DRAM utilization.

Join us on our journey to better power efficiency as we continue with Part 3: Traditional Differences in Power Consumption: Hard Disk Drives vs Solid State Drives. And if you missed our earlier segments, click on the titles to read them:  Part 1: Key Issues in Power Efficiency Measurement, and Part 2: Impact of Workloads on Power Efficiency Measurement..  Bookmark this blog  and check back in April for the final installment of our four-part series. And explore the topic further in the SNIA Green Storage Knowledge Center.

Traditional Differences in Power Consumption: Hard Disk Drives vs Solid State Drives

There are significant differences in power efficiency between Hard Disk Drives (HDDs) and Solid State Drives (SSDs). While some commentators have examined differences in power efficiency measurement for HDDs v SSDs, much of the analysis has not accounted for the key power efficiency contributing factors outlined in this blog.

As a simple generalization at the individual storage device level, HDDs show higher power consumption than SSDs.  In addition, SSDs have higher performance (IOPS and MB/s) often by an order of magnitude or more.  Hence, cursory consideration of device power efficiency measurement, expressed as IOPS/W or MB/s/W, will typically favor the faster SSD with lower device power consumption.

On the other hand, depending on the workload and IO transfer size, HDD devices and systems may exhibit better IOPS/W and MB/s/W if measured to large block sequential RW workloads where head actuators can reside on the disk OD (outer diameter) with limited seek accesses.

The above traditional HDD and SSD power efficiency considerations can be described at the device level as involving the following key points:

HDDs (Hard Disk Drives):

  1. Mechanical Components: HDDs consist of spinning disks and mechanical read/write heads. These moving parts consume a substantial amount of power, especially during startup and when seeking data.
  2. Idle Power Consumption: Even when not actively reading or writing data, HDDs still consume a notable amount of power to keep the disks spinning and ready to access data
  3. Access Time Impact: The mechanical nature of HDDs leads to longer access times compared to SSDs. This means the drive remains active for longer periods during data access, contributing to higher power consumption.

SSDs (Solid State Drives):

  1. No Moving Parts: SSDs are entirely electronic and have no moving parts. As a result, they consume less power during both idle and active states compared to HDDs
  2. Faster Access Times: SSDs have much faster access times since there are no mechanical delays. This results in quicker data retrieval and reduced active time, contributing to lower power consumption
  3. Energy Efficiency: SSDs are generally more energy-efficient, as they consume less power during read and write operations. This is especially noticeable in laptops and portable devices, where battery life is critical
  4. Less Heat Generation: Due to their lack of moving parts, SSDs generate less heat during operation, which can lead to better thermal efficiency in systems.

In summary, SSDs tend to be more power-efficient than HDDs due to their lack of mechanical components, faster access times, and lower energy consumption during both active and idle states. This power efficiency advantage is one of the reasons why SSDs have become increasingly popular in various computing devices, from laptops to data centers.

So just what is an SSD?

It seems like an easy enough question, “What is an SSD?” but surprisingly, most of the search results for this get somewhat confused quickly on media, controllers, form factors, storage interfaces, performance, reliability, and different market segments. 

The SNIA SSD SIG has spent time demystifying various SSD topics like endurance, form factors, and the different classifications of SSDs – from consumer to enterprise and hyperscale SSDs.

“Solid state drive is a general term that covers many market segments, and the SNIA SSD SIG has developed a new overview of “What is an SSD? ,” said Jonmichael Hands, SNIA SSD Special Interest Group (SIG)Co-Chair. “We are committed to helping make storage technology topics, like endurance and form factors, much easier to understand coming straight from the industry experts defining the specifications.”  

The “What is an SSD?” page offers a concise description of what SSDs do, how they perform, how they connect, and also provides a jumping off point for more in-depth clarification of the many aspects of SSDs. It joins an ever-growing category of 20 one-page “What Is?” answers that provide a clear and concise, vendor-neutral definition of often- asked technology terms, a description of what they are, and how each of these technologies work.  Check out all the “What Is?” entries at https://www.snia.org/education/what-is

And don’t miss other interest topics from the SNIA SSD SIG, including  Total Cost of Ownership Model for Storage and SSD videos and presentations in the SNIA Educational Library.

Your comments and feedback on this page are welcomed.  Send them to askcmsi@snia.org.

Your Questions Answered on Persistent Memory, CXL, and Memory Tiering

With the persistent memory ecosystem continuing to evolve with new interconnects like CXL™ and applications like memory tiering, our recent Persistent Memory, CXL, and Memory Tiering-Past, Present, and Future webinar was a big success.  If you missed it, watch it on demand HERE!

Many questions were answered live during the webinar, but we did not get to all of them.  Our moderator Jim Handy from Objective Analysis, and experts Andy Rudoff and Bhushan Chithur from Intel, David McIntyre from Samsung, and Sudhir Balasubramanian and Arvind Jagannath from VMware have taken the time to answer them in this blog. Happy reading!

Q: What features or support is required from a CXL capable endpoint to e.g. an accelerator to support the memory pooling? Any references?

A: You will have two interfaces, one for the primary memory accesses and one for the management of the pooling device. The primary memory interface is the .mem and the management interface will be via the .io or via a sideband interface. In addition you will need to implement a robust failure recovery mechanism since the blast radius is much larger with memory pooling.

Q: How do you recognize weak information security (in CXL)?

A: CXL has multiple features around security and there is considerable activity around this in the Consortium.  For specifics, please see the CXL Specification or send us a more specific question.

Q: If the system (e.g. x86 host) wants to deploy CXL memory (Type 3) now, is there any OS kernel configuration, BIO configuration to make the hardware run with VMWare (ESXi)? How easy or difficult this setup process?

A: A simple CXL Type 3 Memory Device providing volatile memory is typically configured by the pre-boot environment and reported to the OS along with any other main memory.  In this way, a platform that supports CXL Type 3 Memory can use it without any additional setup and can run an OS that contains no CXL support and the memory will appear as memory belonging to another NUMA code.  That said, using an OS that does support CXL enables more complex management, error handling, and more complex CXL devices.

Q: There was a question on ‘Hop” length. Would you clarify?

A: In the webinar around minute 48, it was stated that a Hop was 20ns, but this is not correct. A Hop is often spoken of as “Around 100ns.”  The Microsoft Azure Pond paper quantifies it four different ways, which range from 85ns to 280ns.

Q: Do we have any idea how much longer the latency will be?  

A: The language CXL folks use is “Hops.”   An address going into CXL is one Hop, and data coming back is another.  In a fabric it would be twice that, or four Hops.  The  latency for a Hop is somewhere around 100ns, although other latencies are accepted.

Q: For memory semantic SSD:  There appears to be a trend among 2LM device vendors to presume the host system will be capable of providing telemetry data for a device-side tiering mechanism to decide what data should be promoted and demoted.  Meanwhile, software vendors seem to be focused on the devices providing telemetry for a host-side tiering mechanism to tell the device where to move the memory.  What is your opinion on how and where tiering should be enforced for 2LM devices like a memory semantic SSD?

A: Tiering can be managed both by the host and within computational storage drives that could have an integrated compute function to manage local tiering- think edge applications.

Q: Re VM performance in Tiering: It appears you’re comparing the performance of 2 VM’s against 1.  It looked like the performance of each individual VM on the tiering system was slower than the DRAM only VM.  Can you explain why we should take the performance of 2 VMs against the 1 VM?  Is the proposal that we otherwise would have required those 2 VM’s to run on separate NUMA node, and now they’re running on the same NUMA node?

A: Here the use case was, lower TCO & increased capacity of memory along with aggregate performance of VM’s v/s running few VM’s on DRAM. In this use case, the DRAM per NUMA Node was 384GB, the Tier2 memory per NUMA node was 768GB. The VM RAM was 256GB.

In the DRAM only case, if we have to run business critical workloads e.g., Oracle with VM RAM=256GB,  we could only run 1 VM (256GB) per NUMA Node (DRAM=384GB), we cannot over-provision memory in the DRAM only case as every NUMA node has 384GB only. So potentially we could run 4 such VM’s (VM RAM=256Gb) in this case with NUMA node affinity set as we did in this use case OR if we don’t do NUMA node affinity, maybe 5 such VM’s without completely maxing out the server RAM.  Remember, we did NUMA node affinity in this use case to eliminate any cross NUMA latency.78

Now with Tier2 memory in the mix, each NUMA node has 384GB DRAM and 768GB Tier2 Memory, so theoretically one could run 16-17 such VM’s (VM RAM =256GB), hence we are able to increase resource maximization, run more workloads, increase transactions etc , so lower TCO, increased capacity and aggregate performance improvement.

Q: CXL is changing very fast, we have 3 protocol versions in 2 years, as a new consumer of CXL what are the top 3 advantages of adopting CXL right away v/s waiting for couple of more years?

A: All versions of CXL are backward compatible.  Users should have no problem using today’s CXL devices with newer versions of CXL, although they won’t be able to take advantage of any new features that are introduced after the hardware is deployed.

Q: (What is the) ideal when using agilex FPGAs as accelerators?

A: CXL 3.0 supports multiple accelerators via the CXL switching fabric. This is good for memory sharing across heterogeneous compute accelerators, including FPGAs.

Thanks again for your support of SNIA education, and we invite you to write askcmsi@snia.org for your ideas for future webinars and blogs!

It’s A Wrap – But Networking and Education Continue From Our C+M+S Summit!

Our 2023 SNIA Compute+Memory+Storage Summit was a success! The event featured 50 speakers in 40 sessions over two days. Over 25 SNIA member companies and alliance partners participated in creating content on computational storage, CXL™ memory, storage, security, and UCIe™. All presentations and videos are free to view at www.snia.org/cms-summit.

“For 2023, the Summit scope expanded to examine how the latest advances within and across compute, memory and storage technologies should be optimized and configured to meet the requirements of end customer applications and the developers that create them,” said David McIntyre, Co-Chair of the Summit.  “We invited our SNIA Alliance Partners Compute Express Link™ and Universal Chiplet Interconnect Express™ to contribute to a holistic view of application requirements and the infrastructure resources that are required to support them,” McIntyre continued.  “Their panel on the CXL device ecosystem and usage models and presentation on UCIe innovations at the package level along with three other sessions on CXL added great value to the event.”

Thirteen computational storage presentations covered what is happening in NVMe™ and SNIA to support computational storage devices and define new interfaces with computational storage APIs that work across different hardware architectures.  New applications for high performance data analytics, discussions of how to integrate computational storage into high performance computing designs, and new approaches to integrate compute, data and I/O acceleration closely with storage systems and data nodes were only a few of the topics covered.

“The rules by which the memory game is played are changing rapidly and we received great feedback on our nine presentations in this area,” said Willie Nelson, Co-Chair of the Summit.  “SNIA colleagues Jim Handy and Tom Coughlin always bring surprising conclusions and opportunities for SNIA members to keep abreast of new memory technologies, and their outlook was complimented by updates on SNIA standards on memory-to memory data movement and on JEDEC memory standards; presentations on thinking memory, fabric attached memory, and optimizing memory systems using simulations; a panel examining where the industry is going with persistent memory, and much more.”

Additional highlights included an EDSFF panel covering the latest SNIA specifications that support these form factors, sharing an overview of platforms that are EDSFF-enabled, and discussing the future for new product and application introductions; a discussion on NVMe as a cloud interface; and a computational storage detecting ransomware session.

New to the 2023 Summit – and continuing to get great views – was a “mini track” on Security, led by Eric Hibbard, chair of the SNIA Storage Security Technical Work Group with contributions from IEEE Security Work Group members, including presentations on cybersecurity, fine grain encryption, storage sanitization, and zero trust architecture.

Co-Chairs McIntyre and Nelson encourage everyone to check out the video playlist and send your feedback to askcmsi@snia.org. The “Year of the Summit” continues with networking opportunities at the upcoming SmartNIC Summit (June), Flash Memory Summit (August), and SNIA Storage Developer Conference (September).  Details on all these events and more are at the SNIA Event Calendar page.  See you soon!

50 Speakers Featured at the 2023 SNIA Compute+Memory+Storage Summit

SNIA’s Compute+Memory+Storage Summit is where architectures, solutions, and community come together. Our 2023 Summit – taking place virtually on April 11-12, 2023 – is the best example to date, featuring a stellar lineup of 50 speakers in 40 sessions covering topics including computational storage real-world applications, the future of memory, critical storage security issues, and the latest on SSD form factors, CXL™, and UCIe™.

“We’re excited to welcome executives, architects, developers, implementers, and users to our 11th annual Summit,” said David McIntyre, C+M+S Summit Co-Chair, and member of the SNIA Board of Directors.  “We’ve gathered the technology leaders to bring us the latest developments in compute, memory, storage, and security in our free online event.  We hope you will watch live to ask questions of our experts as they present, and check out those sessions you miss on-demand.”

Memory sessions begin with Watch Out – Memory’s Changing! where Jim Handy and Tom Coughlin will discuss the memory technologies vying for the designer’s attention, with CXL™ and UCIe™ poised to completely change the rules. Speakers will also cover thinking memory, optimizing memory using simulations, providing capacity and TCO to applications using software memory tiering, and fabric attached memory.

Compute sessions include Steven Yuan of StorageX discussing the Efficiency of Data Centric Computing, and presentations on the computational storage and compute market, big-disk computational storage arrays for data analytics, NVMe as a cloud interface, improving storage systems for simulation science with computational storage, and updates on SNIA and NVM Express work on computational storage standards.

CXL and UCIe will be featured with presentations on CXL 3.0 and Universal Compute Interface Express™ On-Package Innovation Slot for Compute, Memory, and Storage Applications.

The Summit will also dive into security with a introductory view of today’s storage security landscape and additional sessions on zero trust architecture, storage sanitization, encryption, and cyber recovery and resilience.

For 2023, the Summit is delighted to present three panels – one on Exploring the Compute Express Link™ (CXL™) Device Ecosystem and Usage Models moderated by Kurtis Bowman of the CXL Consortium, one on Persistent Memory Trends moderated by Dave Eggleston of Microchip, and one on Form Factor Updates, moderated by Cameron Brett of the SNIA SSD Special Interest Group.

We will also feature the popular SNIA Birds-of-a-Feather sessions. On Tuesday April 11 at 4:00 pm PDT/7:00 pm EDT, you can join to discuss the latest compute, memory, and storage developments, and on Wednesday April at 3:00 pm PDT/6:00 pm EDT, we’ll be talking about memory advances.

Learn more in our Summit preview video, check out the agenda, and register for free to access our Summit platform!

“Year of the Summit” Kicks Off with Live and Virtual Events

For 11 years, SNIA Compute, Memory and Storage Initiative (CMSI) has presented a Summit featuring industry leaders speaking on the key topics of the day.  In the early years, it was persistent memory-focused, educating audiences on the benefits and uses of persistent memory.  In 2020 it expanded to a Persistent Memory+Computational Storage Summit, examining that new technology, its architecture, and use cases.

Now in 2023, the Summit is expanding again to focus on compute, memory, and storage.  In fact, we’re calling 2023 the Year of the Summit – a year to get back to meeting in person and offering a variety of ways to listen to leaders, learn about technology, and network to discuss innovations, challenges, solutions, and futures.

We’re delighted that our first event of the Year of the Summit is a networking event at MemCon, taking place March 28-29 at the Computer History Museum in Mountain View CA.

At MemCon, SNIA CMSI member and IEEE President elect Tom Coughlin of Coughlin Associates will moderate a panel discussion on Compute, Memory, and Storage Technology Trends for the Application Developer.  Panel members Debendra Das Sharma of Intel and the CXL™ Consortium, David McIntyre of Samsung and the SNIA Board of Directors, Arthur Sainio of SMART Modular and the SNIA Persistent Memory Special Interest Group, and Arvind Jaganath of VMware and SNIA CMSI will examine how applications and solutions available today offer ways to address enterprise and cloud provider challenges – and they’ll provide a look to the future.

SNIA leaders will be on hand to discuss work in computational storage, smart data acceleration interface (SDXI), SSD form factor advances, and persistent memory trends.  Share a libation or two at the SNIA hosted networking reception on Tuesday evening, March 28.

This inaugural MemCon event is perfect to start the conversation, as it focuses on the intersection between systems design, memory innovation (emerging memories, storage & CXL) and other enabling technologies. SNIA colleagues and friends can register for MemCon with a 15% discount using code SNIA15.

April 2023 Networking!

We will continue the Year with a newly expanded SNIA Compute+Memory+Storage Summit coming up April 11-12 as a virtual event.  Complimentary registration is now open for a stellar lineup of speakers, including Stephen Bates of Huawei, Debendra Das Sharma of  Universal Chiplet Interconnect Express™, Jim Handy of Objective Analysis, Shyam Iyer of Dell, Bill Martin of Samsung, Jake Oshins of Microsoft, Andy Rudoff of Intel, Andy Walls of IBM, and Steven Yuan of StorageX.

Summit topics include Memory’s Headed for Change, High Performance Data Analytics, CXL 3.0, Detecting Ransomware, Meeting Scaling Challenges, Open Standards for Innovation at the Package Level, and Standardizing Memory to Memory Data Movement. Great panel discussions are on tap as well.  Kurt Lender of the CXL Consortium will lead a discussion on Exploring the CXL Device Ecosystem and Usage Models, Dave Eggleston of Microchip will lead a panel with Samsung and SMART Modular on Persistent Memory Trends, and Cameron Brett of KIOXIA will lead a SSD Form Factors Update.   More details at www.snia.org/cms-summit.

Later in 2023…

Opportunities for networking will continue throughout 2023. We look forward to seeing you at the SmartNIC Summit (June 13-15), Flash Memory Summit (August 8-10), SNIA Storage Developer Conference (September 18-21), OCP Global Summit (October 17-19), and SC23 (November 12-17). Details on SNIA participation coming soon!