• Home
  • About
  •  

    Your Questions Answered on Non-Volatile DIMMs

    April 3rd, 2017

     

    by Arthur Sainio, SNIA NVDIMM SIG Co-Chair, SMART Modular

    SNIA’s Non-Volatile DIMM (NVDIMM) Special Interest Group (SIG) had a tremendous response to their most recent webcast:  NVDIMM:  Applications are
    Here
    !  You can view the webcast on demand.

    Viewers had many questions during the webcast.  In this blog, the NVDIMM SIG answers those questions and shares the SIG’s knowledge of NVDIMM technology.

    Have a question?  Send it to nvdimmsigchair@snia.org.

    1. What about 3DXpoint, how will this technology impact the market?

    3DXPoint DIMMs will likely have a significant impact on the market. They are fast enough to use as a slower tier of memory between NAND and DRAM.  It is still too early to tell though.

    2. What are good benchmark tools for DAX and what are the differences between NVML applications and DAX aware applications?

    For benchmark tools, please see the answer for (11).

    NVML applications are written specifically for NVM (Non-Volatile Memory). They may use the open source NVML libraries (http://pmem.io/nvml) for their usage.

    DAX is a File System feature that avoids the usage of Page Cache buffers.  DAX aware applications are aware that the writes and reads would go directly to the underlying NVM without being cached.

    3. On the slide talking about NUMA, there was a mention accessing NVDIMMs from a CPU on a different memory bus. The part about larger access times was clear enough. However, I came away with the impression that there is a correctness issue with handling of ADR signal as well. Please clarify.

    If this question is asking whether the NUMA remote CPU will successfully flush ADR-protected buffers to memory connected to the NUMA near CPU then yes there is the potential for a problem in this area. However ADR is an Intel feature that is not specified in the JEDEC NVDIMM standard, so this is an Intel specific implementation question. The question needs to be posed to Intel.

    4. How common is NVDIMM compatible BIOS? How would one check?

    They are becoming more common all the time. There are at least 8 server/storage systems from Intel and 22 from Supermicro that support NVDIMMs.  Several other motherboard vendors have systems that support NVDIMMs.  Most of the NVDIMM vendors have the lists posted on their websites.

    5. How does a system go in to save? How what exactly does the BIOS have to do to get a system before asserting save?

    The BIOS does the initial checking of making sure the NVDIMM has backup supply on power loss, before it ARMs it. Also, the BIOS makes sure that any RESTORE of the previously saved data is properly done. This involves a set of operations by setting appropriate registers in the NVDIMM module – all that happens during the boot up initialization. On A/C Power Loss, the PCH (Platform Control Hub) detects the condition and initiates what is called the ADR (Asynchronous DRAM Refresh) sequence, terminating in the assertion of SAVE signal by the CPLD. Without the BIOS ARM-ing the NVDIMM module, the NVDIMM module will not respond to the SAVE signal on power loss situation.

    6. Could you paint the picture of hardware costs at this point? How soon will NVDIMM-enabled systems be able to become “the rest of us”?

    The NVDIMM use DRAM, NAND Flash, a controller and well as many other parts in addition to what are used on standard RDIMMs. On that basis the cost of NVDIMM-N is higher that standard RDIMMs.  NVDIMM-enabled systems have been available for several years and are shipping now.

    7. Does RHEL 7.3 easily support Linux Kernel 4.4?

    RHEL 7.3 is still using the 3.10 version of the Linux Kernel. For RHEL related information, please, check with Red Hat.

    You can also refer to: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/index.html

    The distribution has drivers to support the persistent memory. They have also packaged the libraries for the persistent memory.

    8. What are the usual sizes for NVDIMMs available today?

    4GB, 8GB, 16GB, 32GB

    9. Are there any case studies of each of the NVDIMM-N applications mentioned?

    You can find some examples of case studies at these websites:  https://channel9.msdn.com/events/build/2016/p466 and https://msdn.com/events/build/2016/p470

    10. What is the difference between pmem lib/pmfs in Linux and an DAX enabled files system (like ext-DAX)?

    A DAX based File System avoids the usage of Kernel Page Cache Layer for caching its write data. This would make all its write operations go directly to the underlying storage unit. One important thing to understand is, a DAX File System can still use BLOCK DRIVERS for accessing its underlying storage.

    PMFS is a File System that is optimized to use Persistent Memory, by completely avoiding the Page Cache and the Block Drivers. It is designed to provide efficient access to Persistent Memory that would be directly accessible via CPU load/store instructions.

    Refer to this link: https://github.com/linux-pmfs/pmfs for more details. PMFS, as of now is only in experimental stages.

    11. What tool is used to measure the performance?

    The performance measurement depends on what kind of Application workload is to be characterized. This is a very complex topic. No single benchmarking tool is good for all the workload characteristics.

    For File System performance, SpecFS, Bonnie++, IOZone, FFSB, FileBench etc., are good tools.

    SysBench is good for a variety of performance measurements.

    Phoronix Test Suite (http://www.phoronix.com/scan.php?page=home) has a variety of tools for Linux based performance measurements.

    12. How similar do you expect the OS support for P to be to this support for –N? I don’t see a lot of need for differences at this level (though there certainly will be differences in the BIOS).

    As of now, the open source libraries (http://pmem.io) are designed to be agnostic about the underlying memory types. They are simply classified as Persistent Memory, meaning, it could be “-N” or “-P” or something else. The libraries are written for User Space, and they assume that any underlying Kernel support should be transparent.

    The “-P” type has been thought of supporting both the DRAM and the PERSISTENT access at the same time. This might need a separate set of drivers in the Kernel.

     

    13.  Does the PM-based file system appear to be block addressable from the Application?

    A File System creates a layer of virtualization to support the logical entities such as VOLUMES, DIRECTORIES and FILES. Typically, an Application that is running in the User Space has no knowledge of the underlying mechanisms used by a File System for accessing its storage units such as the Persistent Memory. The access provided by a File System to an Application is typically a POSIX File System interface such as open, close, read, write, seek, etc.,

     14. Is ADR a pin?

    ADR stands for Asynchronous DRAM Refresh. ADR is a feature supported on Intel chipsets that triggers a hardware interrupt to the memory controller which will flush the write-protected data buffers and place the DRAM in self-refresh. This process is critical during a power loss event or system crash to ensure the data is in a “safe” state when the NVDIMM takes control of the DRAM to backup to Flash. Note that ADR does not flush the processor cache. In order to do so, an NMI routine would need to be executed prior to ADR.


    How Many IOPS? Users Share Their 2017 Storage Performance Needs

    March 24th, 2017

    New on the Solid State Storage website is a whitepaper from analysts Tom Coughlin of Coughlin Associates and Jim Handy of Objective Analysis which details what IT manager requirements are for storage performance. The paper examines how requirements have changed over a four-year period for a range of applications, including databases, online transaction processing, cloud and storage services, and scientific and engineering computing.  Users disclose how many IOPS are needed, how much storage capacity is required,  and what system bottlenecks prevent them for getting the performance they need.

    You’ll want to read this report before signing up for a SNIA BrightTalk webcast at 2:00 pm ET/11:00 am PT on May 3, 2017 where Tom and Jim will discuss their research and provide answers to questions like:

    • Does a certain application really need the performance of an SSD?
    • How much should a performance SSD cost?
    • What have other IT managers found to be the right balance of performance and cost?

    Register for the “How Many IOPS?  Users Share Their 2017 Storage Performance Needs” at https://www.brighttalk.com/webcast/663/252723


    Your Questions Answered on NVDIMM

    May 23rd, 2016

    The recent NVDIMM webcasts on the SNIA BrightTALK Channel sparked many questions from the almost 1,000 viewers who have watched it live or downloaded the on-demand cast. Now,  NVDIMM SIG Chairs Arthurnvdimm blog Sainio and Jeff Chang answer 35 of them in this blog.  Did you miss the live broadcasts? No worries, you can view NVDIMM and other webcasts on the SNIA webcast channel https://www.brighttalk.com/channel/663/snia-webcasts.

    FUTURES QUESTIONS

    What timeframe do you see server hardware, OS, and applications readily adopting/supporting/recognizing NVDIMMs?

    DDR4 server and storage platforms are ready now. There are many off-the shelf server and/or storage motherboards that support NVDIMM-N.

    Linux version 4.2 and beyond has native support for NVDIMMs. All the necessary drivers are supported in the OS.

    NVDIMM adoption is in progress now.

    Technical Preview 5 of Windows Server 2016 has NVDIMM-N support
     

    How, if at all, does the positioning of NVDIMM-F change after the eventual introduction of new NVM technologies?

    If 3DXP is successful it will likely to have a big impact on NVDIMM-F. 3DXP could be seen as an advanced version of a NVDIMM-F product. It sits directly on the DDR4 bus and is byte addressable.

    NVDIMM-F products have the challenge of making them BYTE ADDRESSBLE, depending on what kind of persistent media is used.

    If NAND flash is used, it would take a lot of techniques and resources to make such a product BYTE ADDRESSABLE.

    On the other hand, if the new NVM technologies bring out persistent media that are BYTE ADDRESSABLE then the NVDIMM-F could easily use them for their backend.
    How does NVDIMM-N compare to Intel’s 3DXPoint technology?

    At this point there is limited technical information available on 3DXP devices.

    When the specifications become available the NVDIMM SIG can create a comparison table.

    NVDIMM-N products are available now. 3DXP-based products are planned for 2017, 2018. Theoretically 3DXP devices could be used on NVDIMM-N type modules

     

     

     

    PERFORMANCE AND ENDURANCE QUESTIONS

    What are the NVDIMM performance and endurance requirements?

    NVDIMM-N is no different from a RDIMM under normal operating conditions. The endurance of the Flash or NVM technology used on the NVDIMM-N is not a critical factor since it is only used for backup.

    NVDIMM-F would depend on various factors: (1) is the backend going to be NAND Flash or some other entity? (2) What kind of access pattern is going to be done by the application? The performance must be at least same as that of NVDIMM-N.

    Are there endurance requirements for NVDIMM-F? Won’t the flash wear out quickly when used as memory?

    Yes, the aspect of Flash being used as a RANDOM access device with MEMORY access characteristics would definitely have an impact on the endurance.
    NVDIMM-F – Doesn’t the performance limitations of the NAND vs. DRAM effect the application?

    NAND Flash would never hit the performance requirements of the DRAM when seen as an entity to entity comparison. But, in the whole perspective of a wider solution, the data path of DRAM data -> Persistence Data in a traditional model would have more delays contributed by a good number of software layers involved in making the data persistent versus, in the NVDIMM-F the data that is instantly persistent — for just a short term additional latency.
    Is there extra heat being generated….does it need any other cooling (NVDIMM-F, NVDIMM-N)

    No
    In general, our testing of NVDIMM-F vs PCIe based SSDs has not shown the expected value of NVDIMMs.  The PCIe based NVMe storage still outperforms the NVDIMMs.

    TBD
    What is the amount of overhead that NVDIMMs are adding on CPUs?

    None at normal operation
    What can you say about the time required typically to charge the supercaps?  Is the application aware of that status before charge is complete?

    Approximately two minutes depending on the density of the NVDIMM and the vendor.

    The NVDIMM will not be ready because the charging status and in turn the system BIOS will wait; until it times out if the NVDIMM is not functioning.

    USE QUESTIONS

    What will happen if a system crashes then comes back before the NVDIMM finishes backup? How the OS know what to continue as the state in the register/L1/L2/L3 cache is already lost?

    When system comes back up, it will check if there is valid data backed up in the NVDIMM. If yes, backed up data will be restored first before the BIOS sets up the system.

    The OS can’t depend on the contents of the L1/L2/L3 cache. Applications must do I/O fencing, use commit points, etc. to guarantee data consistency.

    Power supply should be able to hold power for at least 1ms after the warning of AC power loss.

    Is there garbage collection on NVDIMMs?

    This depends on individual vendors. NVDIMM-N may have overprovisioning and wear levering management for the NAND Flash.

    Garbage collection really only makes sense for NVDIMM-F.
    How is byte addressing enabled for NAND storage?

    By default, the NAND storage can be addressed only through the BLOCK mode addressing. If BYTE addressability is desired, then the DDR memory at the front must provide sophisticated CACHING TECHNIQUES to trick the Host Memory Controller in to thinking that it is actually accessing a larger capacity DDR memory.
    Is the restore command issued over the I2C bus?  Is that also known as the SMBus?

    Yes, Yes
    Could NVDIMM-F products be used as both storage and memory within the same server?

    NVDIMM-F is by definition only block storage. NVDIMM-P is both (block) storage and memory.

     

    COMPATIBILITY QUESTIONS

     

    Is NVDIMM-N support built into the OS or do the NVDIMM vendors need to provide drivers? What OS’s (Windows version, Linux kernel version) have support?

    In Linux, right from 4.2 version of the Kernel, the generic NVDIMM-N support is available.

    All the necessary drivers are provided in the OS itself.

    Regarding the Linux distributions, only Fedora and Ubuntu have upgraded themselves to the 4.x kernel.

    The crucial aspect is, the BIOS/MRC support needed for the vendor specific NVDIMM-N to get exposed to the Host OS.

    MS Windows has OS support – need to download.
    What OS support is available for NVDIMM-F? I’m assuming some sort of drivers is required.

    Diablo has said they worked the BIOS vendors to enable their Memory1 product. We need to check with them.

    For other NVDIMM-F vendors they would likely require drivers.

    As of now no native OS support is available.
    Will NVDIMMs work with typical Intel servers that are 2-3 years old?   What are the hardware requirements?

    The depends on the CPU. For Haswell, Grantley, Broadwell, and Purley the NVDIMM-N are and/or will be supported

    The hardware requires that the CPLD, SAVE, and ADR signals are present

    Is RDMA compatible with NVDIMM-F or NVDIMM-N?

    The RDMA (Remote Direct Memory Access) is not available by default for NVDIMM-N and NVDIMM-F.

    A software layer/extension needs to be written to accommodate that. Works are in progress by the PMEM committee (www.pmem.io) to make the RDMA feature available transparently for the applications in the future.

    SNIA Reference: http://www.snia.org/sites/default/files/SDC15_presentations/persistant_mem/ChetDouglas_RDMA_with_PM.pdf
    What’s the highest capacity that an NVDIMM-N can support?

    Currently 8GB and 16GB but this depends on individual vendor’s roadmaps.

     

    COST QUESTIONS

    What is the NVDIMM cost going to look like compared to other flash type storage options?

    This relates directly to what types and quantizes of Flash, DRAM, controllers and other components are used for each type.

     

    MISCELLANEOUS QUESTIONS

    How many vendors offer NVDIMM products?

    AgigA Tech, Diablo, Hynix, Micron, Netlist, PNY, SMART, and Viking Technology are among the vendors offering NVDIMM products today.

     

    Is encryption on the NVDIMM handled by the controller on the NVDIMM or the OS?

    Encryption on the NVDIMM is under discussion at JEDEC. There has been no standard encryption method adopted yet.

    If the OS encrypts data in memory the contents of the NVDIMM backup would be encrypted eliminating the need for the NVDIMM to perform encryption. Although because of the performance penalty of OS encryption, NVDIMM encryption is being considered by NVDIMM vendors.
    Are memory operations what is known as DAX?

    DAX means Direct Access and is the optimization used in the modern file systems – particularly EXT4 – to eliminate the Kernel Cache for holding the write data. With no intermediate cache buffers, the write operations go directly to the media. This makes the writes persistent as soon as they are committed.

    Can you give some practical examples of where you would use NVDIMM-N, -F, and –P?

    NVDIMM-N: load/store byte access for journaling, tiering, caching, write buffering and metadata storage

    NVDIMM-F: block access for in-memory database (moving NAND to the memory channel eliminates traditional HDD/SSD SAS/PCIe link transfer, driver, and software overhead)

    NVDIMM-P: can be used either NVDIMM-N or –F applications
    Are reads and writes all the same latency for NVDIMM-F?

    The answer depends on what kind of persistent layer is used.   If it is the NAND flash, then the random writes would have higher latencies when compared to the reads. If the 3D XPoint kind of persistent layer is used, it might not be that big of a difference.

     

    I have interest in the NVDIMMs being used as a replacement for SSD and concerns about clearing cache (including credentials) stored as data moves from NVM to PM on an end user device

    The NVDIMM-N uses serialization and fencing with Intel instructions to guarantee data is in the NVDIMM before a power failure and ADR.

     

    I am interested in how many banks of NVDIMMs can be added to create a very large SSD replacement in a server storage environment.

    NVDIMMs are added to a system in memory module slots. The current maximum density is 16GB or 32GB. Server motherboards may have 16 or 24 slots. If 8 of these slots have 16GB NVDIMMs that should be like a 96GB SSD.
    What are the environmental requirements for NVDIMMs (power, cooling, etc.)?

    There are some components on NVDIMMs that have a lower operating temperature than RDIMMs like flash and FPGA devices. Refer to each vendor’s data sheet for more information. Backup Energy Sources based on ultracapacitors require health monitoring and a controlled thermal environment to ensure an extended product life.
    How about data-at-rest protection management? Is the data in NVDIMM protected/encrypted? Complying with TCG and FIPS seems very challenging. What are the plans to align with these?

    As of today, encryption has not been standardized by JEDEC. It is currently up to each NVDIMM vendor whether or not to provide encryption..

     

    Could you explain the relationship between the NVDIMM and the IO stack?

    In the PMEM mode, the Kernel presents the NVDIMM as a reserved memory, directly accessible by the Host Memory Controller.

    In the Block Mode, the Kernel driver presents the NVDIMM as a block device to the IO Block Layer.
    With NVDIMMs the data can be in memory or storage. How is the data fragmentation managed?

    The NVDIMM-N is managed as regular memory. The same memory allocation fragmentation issues and handling apply. The NVDIMM-F behaves like an SSD. Fragmentation issues on an NVDIMM-F are handled like an SSD with garbage collection algorithms.

     

    Is there a plan to support PI type data protection for NVDIMM data? If not, achieving E2E data protection cannot be attained.

    As of today, encryption has not been standardized by JEDEC. It is currently up to each NVDIMM vendor whether or not to provide encryption.

     

    Since NVDIMM is still slower than DRAM so we still need DRAM in the system? We cannot get rid of DRAM yet?

    With NVDIMM-N DRAM is still being used. NVDIMM-N operates at the speed of standard RDIMM

    With NVDIMM-F modules, DRAM memory modules are still needed in the system.

    With NVDIMM-P modules, DRAM memory modules are still needed in the system.
    Can you use NVMe over ethernet?

    NVMe over Fabrics is under discussion within SNIA http://www.snia.org/sites/default/files/SDC15_presentations/networking/WaelNoureddine_Implementing_%20NVMe_revision.pdf

     


    SNIA’s Persistent Memory Education To Be Featured at Open Server Summit 2016

    April 12th, 2016

    sssi boothIf you are in Silicon Valley or the Bay Area this week, SNIA welcomes you to join them and the Solid State Storage Initiative April 13-14 at the Santa Clara Convention Center for Open Server Summit 2016, the industry’s premier event that focuses on the design of next- generation servers with topics on data center efficiency, SSDs, core OS, cloud server design, the future of open server and open storage, and other efforts toward combining industry-standard hardware with open-source software.

    The SNIA NVDIMM Special Interest Group is featured at OSS 2016, and will host a panel Thursday April 14 on NVDIMM technology, moderated by Bill Gervasi of JEDEC and featuring SIG members Diablo Technology, Netlist, and SMART Modular. The panel will highlight the latest activities in the three “flavors” of NVDIMM , and offer a perspective on the future of persistent memory in systems. Also, SNIA board member Rob Peglar of Micron Technology will deliver a keynote on April 14, discussing how new persistent memory directions create new approaches for system architects and enable entirely new applications involving enormous data sets and real-time analysis.

    SSSI will also be in booth 403 featuring demonstrations by the NVDIMM SIG, discussions on SSD data recovery and erase, and updates on solid state storage performance testing.  SNIA members and colleagues can register for $100 off using the code SNIA at http://www.openserversummit.com.


    SNIA’s Solid State Storage Initiative Advances the Industry at Flash Memory Summit

    August 28th, 2015

    A classic case of SNIA Solid State Storage Initiative (SSSI) member collaboration for industry advancement was on display in the SSSI booth for NVDIMM-N demonstration at the Flash Memory Summit (FMS) 2015. Under the direction of SSSI Chair Jim Ryan and coordinated by NVDIMM SIG co chairs Arthur Sainio and Jeff Chang and TechDev Committee chair Eden Kim, the SSSI was able to update and include NVDIMM-N storage performance in the SSSI marketing collaterals on the Summary Performance Comparison by Storage Class charts.

    2015SummaryPerformanceChart.NVDIMM.1200

    Five SSSI member companies – AgigA Tech, Calypso, Micron, SMART Modular, and Viking Technology – collaborated over a four week period on the introduction of a new NVDIMM-N storage performance demonstration. While it is rare to have potential competitors collaborate in such a fashion, NVDIMM-N storage represents a new paradigm for super fast, low latency, high IO/watt storage solutions. The NVDIMM-SIG has taken a leadership position by evangelizing the technology and developing the industry infrastructure necessary for large scale deployment.

    This collaboration highlighted a classic blend of technical, marketing and industry association cooperation.

    In the weeks leading up to FMS, the NVDIMM-SIG planned for an in-booth demonstration of the NVDIMM-N storage modules. To pave the way for universal adoption, the team worked together to dial in the Intel Open Source block IO development driver to meet the standards of the SNIA Performance Test Specification (PTS). An added goal was inclusion of NVDIMM-N modules as a new line item on the Summary Performance Comparison by Storage Class chart which lists PTS performance for various storage technologies. Under the guidance of NVDIMM-SIG, a rush project was instigated to get NVDIMM-N performance data tested to the PTS for the trade show.

    Micron took the lead by lending a Supermicro server with Micron NVDIMM-N to Calypso for testing. Calypso then installed CTS test software on the server to allow full testing to the PTS. Viking and SMART Modular contributed by helping dial in the drivers, as well as sending modules from Viking and SMART Modular to cross reference with the Micron modules. The test plan was comprised of several test iterations using single, dual and finally quad modules using each of the vendor contributed modules.

    The early single and dual module tests ran into repeatability and stability issues. NVDIMM-SIG consulted with Intel on the nuance of the Intel block IO driver while Calypso continued testing. The team successfully completed a test run that met the PTS steady state requirements on the quad module in time to release data for the show.

    We had a solid demonstration at the SNIA SSSI Flash Memory Summit Booth on NVDIMM-N Performance complete with marketing collateral available for review and a handout. NVDIMM-SIG members responded to the many questions and interest in the NVDIMM-N storage technology.

    fms booth

    “Once again,” said SSSI Chair Jim Ryan, “we can see the value and benefit of SNIA SSSI to its members, the SNIA educational community and the NVDIMM industry. I believe this is a great case study in how we all can contribute and benefit from working within the SSSI for the betterment of individual companies, market development and the Solid State Storage industry at large.” SSSI provides educational and marketing materials free of charge on its public website while SNIA SSSI members may join the NVDIMM-SIG and other SSSI committees. Anyone interested to find out more about the SSSI or any of its many committees can go to the following link http://www.snia.org/sssi.

     


    Data Recovery and Selective Erasure of Solid State Storage a New Focus at SNIA

    July 15th, 2015

    The rise of solid state storage has been incredibly beneficial to users in a variety of industries. Solid state technology presents a more reliable and efficient alternative to traditional storage devices. However, these benefits have not come without unforeseen drawbacks in other areas. For those in the data recovery and data erase industries, for example, solid state storage has presented challenges. The obstacles to data recovery and selective erasure capabilities are not only a problem for those in these industries, but they can also make end users more hesitant to adopt solid state storage technology.

    Recently a new Data Recovery and Erase Special Interest Group (SIG) has been formed within the Solid State Storage Initiative (SSSI) within the Storage Networking Industry Association (SNIA). SNIA’s mission is to “lead the storage industry worldwide in developing and promoting standards, technologies and educational services to empower organizations in the management of information.” This fantastic organization has given the Data Recovery and Erase SIG a solid platform on which to build the initiative.

    The new group has held a number of introductory open meetings for SNIA members and non-members to promote the group and develop the group’s charter. For its initial meetings, the group sought to recruit both SNIA members and non-members that were key stakeholders in fields related to the SIG. This includes data recovery providers, erase solution providers and solid state storage device manufacturers. Aside from these groups, members of leading standards bodies and major solid state storage device consumers were also included in the group’s initial formation.

    The group’s main purpose is to be an open forum of discussion among all key stakeholders. In the past, there have been few opportunities for representatives from different industries to work together, and collaboration had often been on an individual basis rather than as a group. With the formation of this group, members intend to cooperate between industries on a collective basis in order to foster a more constructive dialogue incorporating the opinions and feedback of multiple parties.

    During the initial meetings of the Data Recovery and Erase SIG, members agreed on a charter to outline the group’s purpose and goals. The main objective is to foster collaboration among all parties to ensure consumer demands for data recovery and erase services on solid state storage technology can be performed in a cost-effective, timely and fully successful manner

    In order to achieve this goal, the group has laid out six steps needed, involving all relevant stakeholders:

    1. Build the business case to support the need for effective data recovery and erase capabilities on solid state technology by using use cases and real examples from end users with these needs.
    2. Create a feedback loop allowing data recovery providers to provide failure information to manufacturers in order to improve product design.
    3. Foster cooperation between solid state manufacturers and data recovery and erase providers to determine what information is necessary to improve capabilities.
    4. Protect sensitive intellectual property shared between data recovery and erase providers and solid state storage manufacturers.
    5. Work with standards bodies to ensure future revisions of their specifications account for capabilities necessary to enable data recovery and erase functionality on solid state storage.
    6. Collaborate with solid state storage manufacturers to incorporate capabilities needed to perform data recovery and erase in product design for future device models.

    The success of this special interest group depends not only on the hard work of the current members, but also in a diverse membership base of representatives from different industries. We will be at Flash Memory Summit in booth 820 to meet you in person! Or you can visit our website at www.snia.org/forums/sssi for more information on this new initiative and all solid state storage happenings at SNIA.   If you’re a SNIA member and you’d like to learn more about the Data Recovery/Erase SIG or you think you’d be a good fit for membership, we’d love to speak with you.  Not a SNIA member yet? Email marty.foltyn@snia.org for details on joining.


    New SNIA SSSI Webcast May 28 on Persistent Memory Advances

    May 22nd, 2015

    Join the NVDIMM Special Interest Group for an informative SNIA Brighttalk webcast on Persistent Memory Advances:  Solutions with Endurance, Performance & Non-Volatility on Thursday, May 28, 2015 at 12:00 noon Eastern/9:00 am Pacific.  Register at http://www.snia.org/news_events/multimedia#webcasts

    Mario Martinez of Netlist, a SNIA SSSI NVDIMM SIG member, will discuss how persistent memory solutions deliver the endurance and performance of DRAM coupled with the non-volatility of Flash. This webinar will also update you on the latest solutions for enterprise server and storage designs, and provide insights into future persistent memory advances. A specific focus will be NVDIMM solutions, with examples from the member companies of the SNIA NVDIMM Special Interest Group.


    Solid State Summit Webinar Presentations Now Available for Viewing

    April 30th, 2015

    The April 21/22, 2015 Solid State Storage Summit, presented by SNIA and the Evaluator Group on the SNIA Brighttalk Channel, was a great success.  Attendees raved about the high quality content and knowledgable speakers.

    Did you miss it?

    No worries!  Now you can listen to  SNIA Solid State Storage Initiative experts and analysts from the Evaluator Group on the latest updates on Solid State Technology.  Click on the title of each presentation to listen to this great technical information.

    Day 1Solid State Systems – 5 different webcasts from Intel, Load Dynamix, Evaluator Group, EMC, and HP

    Day 2 – Solid State Components – 5 different webcasts from the San Diego Supercomputer Center, NetApp, Micron, Toshiba, and SMART Modular


    New Website for SSSI Highlights Key SSD Technology Activities

    October 21st, 2014

    A new, more easily “navigatable” website is now online for the SNIA Solid State Storage Initiative (SSSI)  technology community.

    Divided into the activities the SSSI focuses on – Performance, NVDIMM, Non-Volatile Memory Programming, and PCIe SSDs, and with two new tabs linking directly to “News” and “Resources”, the new format gives readers quick access to webcasts, white papers, articles, presentations, and technical materials critically needed in the rapidly changing world of Solid State Storage technology.

    The right navigation bar also highlights SSSI member companies and provides direct links to the SSSI blog you are reading now, the SSSI Twitter feed, and the SSSI LinkedIn Group SSDs – What’s Important to You?

    Check it out, and let us know what you think at asksssi@snia.org or on our social media links!


    Join the Solid State Storage Initiative August 4-7 at Flash Memory Summit 2014

    July 21st, 2014

    The SNIA and the Solid State Storage Initiative (SSSI) invite SNIA members and non-members alike to attend Flash Memory Summit 2014, August 4-7, 2014 at the Santa Clara Convention Center.

    SNIA at Flash Memory Summit offers an all star keynote lineup, including SNIA Member companies Dell, Diablo, Fusion-io, IBM, Intel, Marvell, Micron, NetApp, PMC-Sierra, Samsung, and SanDisk.  SSSI members will lead panels and sessions on SSD, NVDIMM, and NVM Programming.

    A SNIA Education Day on Monday, August 4 in Room 203/204 of the Santa Clara Convention Center will feature award-winning SNIA Tutorials on Flash and Storage where attendees can learn about secure storage, SSD workload testing, benefits of Flash storage to the enterprise, PCI Express, and Flash storage architectures from SNIA member experts.  This Education Day is complimentary to all FMS attendees.

    Following the Education Day, all are welcome to attend a Solid State Storage Reception Monday evening from 5:30 pm – 7:00 pm in Room 203/204 featuring updates on the solid state disk market, an NVDIMM presentation, and an NVM Programming Model overview.  Visit displays that highlight SNIA Solid State Initiative programs, including Non Volatile Memory Programming, Performance Testing,  and Workload I/O Capture.  Learn how you can participate in the exciting 2014 programs of the SSSI.

    A Non-Volatile DIMMs:  When Flash Isn’t Fast Enough Hands-On Lab presented by the NVDIMM SIG and SIG member companies AgigaTech, Netlist, and SMART Modular will illustrate how a category of NVDIMMs function in server and storage systems and how they can be integrated into a standard server platform.

    And don’t forget to stop by SNIA SSSI Booth 808 in the Exhibit Hall to check out  five static and two live NVDIMM displays and new whitepapers, brochures, and news on SSDs.

    Register now at www.flashmemorysummit.com

    Use the code “SNIA” to sign up today and receive $100 off Full Conference, 3-Day Conference, and One-Day Technical Program registration